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ABSTRACT

Understanding bubble clouds can be helpful in elucidating the dynamics of the
upper-ocean boundary layer (Thorpe, 1992). The effects are subtle; for example void
fractions as low as 1% can reduce the sound speed in water by an order of magnitude
(Lamarre and Melville, 1991). The models of bubble mediated gas transfer depends on
reliable estimates of the initial bubble size distribution (Melville et al., 1995). While many
studies have been done on the population and general description of microbubbles already
dispersed in the near-surface layer, few investigations have reported on bubble clouds. A
systematic parameterization of the bubble clouds characteristics under various and well-

controlled conditions is necessary.

A laboratory study of bubble clouds produced by breaking waves under
various wind velocities in both fresh and salt waters and at different water temperatures is
presented. Video imaging technique is employed. Reported parameters of interest are: the
spatial and temporal evolution of cloud shape, penetration depth, void fraction. The

possibility of obtaining bubble size distributions from measured void fraction is investigated.
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