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Chapter 4 

WHITECAP COVERAGE DATABASE 

Sunlight, moonlight, 
Day light, night light, 
There's no greater sight 
Than whitecaps at their height. 

    Cherokee poem, WHITECAPS 

 

A new method has been developed for estimating whitecap coverage, W, 

on a global scale using the satellite-measured brightness temperature of the ocean 

surface.  Whitecap coverage evaluated with this method incorporates various 

environmental effects.  An extensive database of W and concomitant measurements of 

environmental variables can be compiled with the new method.  This database could be 

useful for analyzing spatial and temporal characteristics of oceanic whitecaps, and 

assessing their role for various processes at the air-sea interface.  Most importantly, this 

database allows new dependencies of whitecap coverage to be parameterized.  This 

chapter gives an account of the content, organization, and use of the whitecap coverage 

database.  

4.1 Database content and organization 

The new method, described in detail in Chapter 3, is applied to satellite and 

in situ-measured data for TB, Ts, U10, S, and V for all days of 1998 to obtain daily maps 

of global whitecap coverage, W.   
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The number of pixels useful for W-estimation after applying all necessary 

masks to the data (wind, clear sky, rain, and Ts availability), ranges from a minimum of 

about 6,700 in November to maximum of 27,000 in October.  This constitutes 4% to 

17% of all pixels representing the oceans on a 0.5°×0.5° global map.   

Minimum occurrences of conditions yielding unrealistic negative values for 

W happened in November with about 0.5% of all useful cells.  The maximum number of 

such cases occurred in July, when W-values were negative for 7% of all useful cells.   

The minimum number of cells discarded due to large relative error is 

encountered in July, about 2.5% of all useful cells.  The maximum number of cases 

with large errors is registered in May, about 10.5% of all useful cells.   

Taking into account the removal of negative and erroneous estimates, 83% 

to 96% of all cells available for retrieving W give acceptable values.  On average, the 

number of credible W-estimates is about 14,000 per day—a wealth of values for W in 

comparison to the 500 points in situ measurements obtained for years.  Calculations for 

the entire 1998 give more than 5 million reliable entries for the whitecap coverage 

database.   

The whitecap coverage database is organized into two major parts 

(Table 4.1).  One part comprises W and the most significant intermediate variables 

resulting from the new method.  An examination and analysis of the data comprising 

the first part of the whitecap coverage database provides insights for the spatial and 

temporal characteristics of global oceanic whitecaps.  Another part of the database 

groups W values and their errors with simultaneously measured environmental 

variables.  The data stored in the second part of the whitecap coverage database is used 

for parameterizations of whitecap coverage in terms of various environmental factors.   
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Table 4.1 Organization of the whitecap coverage database 

Part 1: W estimates from satellite data Part 2: W estimates to parameterize 
Variable Records Files Variable Records Files 
Daily W 

Map 
Array (720×360) 

Image 
365 
HDF 

1.1 Mb 

W, σW, U10, 
Ts, S, r.e.W 

Matrix (6×259200) 365 
Binary 
6 Mb 

Monthly mean W 
Map 

Num. used pxls 

Array (720×360) 
Image 

Array (720×360) 

365 
HDF 

10.4 Mb 

Only “good” 
data for  

W, σW, U10, Ts, 
S, r.e.W 

Matrix 
(6×≈14000) 

365 
Text 

≈ 1.1 Mb 

W, σW, e, σe, es, 
σes, ef, σef, ∆er, 

σer, ε′, ε″, ε′f, ε″f, 
composite mask 

An array 
(720×360)  

for each variable 

356 
HDF 

15.3 Mb 

W, σW, U10, Ts, 
S, r.e.W for 20 
salinity bins 

Matrix 
(6×<100 to ≈2500) 

20×365 
Text 

6 to 130 
kb 

   W, σW, U10, Ts, 
S, r.e.W for 20 
salinity bins 
divided into 

12 
temperature 
bins and 4 

observational 
sets (8 days) 

Matrix 
(6×0 to ≈2500) 

4×12×20 
Text 

0 to 400 
kb 

Total: 1095 HDF files  
           in 12 directories (Jan. to Dec. ) 

Total: 365 binary and 8625 text files 
           in 12 directories (Jan. to Dec. ) 
           each containing 20 directories (S1 to S20) 

 

All files in the first part of the database are HDF.  An array and an image of 

retrieved W are saved for each day in a separate HDF file.  Arrays with monthly 

averaged W values and the number of pixels processed for each location during the 

month are saved in another HDF file.  Intermediate results for each day are saved in yet 

another HDF file as multiple records of 720×360 arrays, including the standard 

deviation, σW, of the retrieved W, the composite mask, the emissivities e, es, ∆er, and ef 

with their corresponding standard deviations, as well as the real and imaginary parts of 

the specular and foam dielectric constants (ε', ε", εf' and εf").  All files are organized in 

12 directories, one for each month.   
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To proceed with various parameterizations of W, it is necessary to organize 

the retrieved W values and corresponding concomitant measurements of wind speed, 

U10, sea surface temperature, Ts, and salinity, S, into a form convenient for processing 

by different algorithms and software.  Binary and text files store the data in such a form 

and comprise the second part of the whitecap coverage database (Table 4.1, Part 2).  

This is implemented in two steps. 

First, a set of programs in the Transform environment organizes and saves 

0.5°×0.5° global maps of six variables into one matrix, namely W, σW, r.e.W, U10, Ts, 

and S.  Daily data for each of these variables are in 360×720 matrices.  Each matrix is 

re-arranged into a single column having 259,200 rows.  The re-arrangement proceeds 

column-wise from left to right.  It starts from the leftmost column, i.e., the North-

South line at 180° W, and stacks each next North-South line below the previous one.  

The last 360 rows in this long column are the pixels for the North-South line at 179° E 

(180° E coincides with 180° W).  The six variables produce six such long columns.  

These are placed in one 6×259,200 matrix.  This matrix contains all pixels mapping the 

world on a 0.5°×0.5° grid, including the pixels representing land and the pixels flagged 

by the masks.  One matrix, saved as a binary file, stores the daily data of all six 

variables.  For the entire 1998, 365 such complete matrices are saved in 12 directories, 

one for each month (Table 4.1, Part 2).   

Second, a Matlab program further re-organizes these complete daily 

matrices.  Initially, only the pixels useful for retrieving W are extracted, i.e., the pixels 

representing land and the pixels flagged by the masks are “squeezed out” of the 

matrices by taking only the rows with useful W.  The wind speed values, ranging from 3 

to 35 m s-1 after applying the wind mask, serve as a reference for the selection of these 
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pixels.  The new reduced matrices still contain the negative and erroneous W estimates.  

Thus, the next step in the re-organization is further reducing these matrices by taking 

only the pixels with reliably retrieved W.  The result of this last step is a matrix for each 

day containing all “good” data for the 6 variables of interest.  These final matrices all 

have 6 columns, one for each variable, but are of different lengths, which are 

determined by the number of pixels useful for retrieving W for a given day (on average 

14,000).  The daily matrices with “good” data are organized in 12 directories, one for 

each month (Table 4.1, Part 2).  These “good” data are subjects to regression analysis 

(§4.3).  Though keeping the unrealistic and erroneous W-values in the complete 

matrices may seem redundant, their storage could be useful for other analyses and 

comparisons.  For instance, analysis of the environmental variables accompanying the 

negative W values may help to find a pattern for conditions restricting the estimate of 

W.  These, in turn, can be used to predict locations and events when retrieving 

whitecap coverage reliably is not possible.   

4.2 Global whitecap coverage 

4.2.1 Previous and new estimates of global whitecap coverage  

Estimates of whitecap coverage, as well as their global distribution and 

seasonal changes, have been made previously using W(U10) relations similar to (2.3) but 

with different exponents (recall §3.4.2).   

Blanchard (1963) first combined a quadratic dependence of W on U10 with 

a map of mean winds over the world ocean to obtain global whitecap distribution for 

summer and winter.  The latitudinal variations of Blanchard’s (1963) evaluation show 

maxima in the whitecapping (4% to 10%) at the mid latitudes (30° to 60°) and 2% to 



 115

4 % whitecap coverage for low latitudes (up to 30° North and South of the Equator).  

Blanchard (1963) estimated annual mean global whitecap coverage of 3.4%.  The 

annual means in the Northern and Southern hemispheres (NH and SH) are 2.9% and 

4.0%, respectively.  These values are high compared to other evaluations (Spillane et 

al., 1986; Erickson et al., 1986), and can be considered as an upper limit of global 

whitecap coverage.   

Spillane et al. (1986) produced world whitecap atlas using monthly 

averaged wind speed and atmospheric stability observations compiled by the National 

Climatic Data Center (NCDC) at Asheville, North Carolina from ship cruises.  They 

employed a power law for the W(U10) dependence pieced for cold, moderate, and warm 

sea surface temperature.  Maps of global whitecap coverage for each month show 

maximum whitecapping, above 4%, in North Atlantic beyond 40° during winter 

months.  Whitecap coverage in the Southern Ocean does not exceed 2% even during 

the austral winter.  At low and mid latitudes (up to 40° N and S) the whitecap coverage 

never exceeds 1%.  These values are low compared to Blanchard’s (1963) estimates, 

and can be considered as a lower limit of oceanic whitecap coverage.   

Erickson et al. (1986) also present seasonal estimates of global oceanic 

whitecap coverage computed with (2.3) and monthly mean surface wind speeds over 

the world ocean from the NCDC.  Global maps for the four seasons show that the 

highest whitecap coverage, usually up to 4% and sporadically above 5%, is observed in 

mid and high latitudes (beyond 30° N and S) during winter and fall in each hemisphere.  

The low-latitude areas in both hemispheres have whitecap coverage less than 1%.  

These estimates fall in between the upper and lower limits for W established by 

Blanchard (1963) and Spillane et al. (1986).   
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In estimating global whitecap coverage, all authors (Blanchard, 1963, 

1983, 1985; Spillane et al., 1986; Erickson et al., 1986) discuss possible 

underestimation of W values for two reasons.  First, ships usually avoid areas with 

stormy weather leading to under sampling of high-wind-speed conditions.  This is the 

most probable cause for observing low estimates of W in the Southern Ocean in 

Spillane et al.’s (1986) whitecap atlas.  Second, due to the non-linearity of the W(U10) 

dependence, the use of mean winds, usually monthly means, instead of instantaneous 

winds, also yields underestimation of the whitecap coverage.  Blanchard (1963, 1983, 

1985) and Erickson et al. (1986) account for this problem by correcting their W 

estimates for the standard deviation of the wind speed.   

Figure 4.1 demonstrates this underestimation well.  The figure plots the 

difference between monthly averaged values of whitecap coverage, ∆WU, for March 

1998 calculated with (2.3) in two ways.  In the first way, the monthly mean W is 

obtained using the mean wind field for March 1998, ∆WUavr.  In the second way, the 

monthly mean W is obtained by averaging 31 daily W maps computed from 31 daily 

wind fields, ∆WUins.  In the figure, red represents cases when WUins > WUavr, while blue 

represents cases of WUins < WUavr.  This difference map is mostly reddish, proving that 

using mean instead of instantaneous winds to estimate W usually leads to 

underestimation of the global whitecap coverage.  The underestimation is well 

noticeable in the Southern Ocean, North Pacific, and North-East Atlantic.   
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∆WU = WUins – WUavr 

Figure 4.1 Difference in the mean whitecap coverage values, ∆∆WU, for March 
1998 computed with wind-speed formula (2.3) using monthly mean 
wind field for March 1998, WUavr, and 31 daily wind fields, WUins, for 
March 1998.  Red represents cases of WUins, > WUavr; blue represents 
cases of WUins, < WUavr. 

In this study, whitecap coverage is calculated from daily, in a sense 

instantaneous, fields of satellite data.  The daily values of the whitecap coverage are 

averaged to obtain monthly, seasonal, or annual means of W.  These latter are used to 

investigate the spatial and temporal characteristics of the global whitecap coverage 

retrieved with the new method.   

Global W maps for each month of 1998 are archived in the whitecap 

coverage database.  Averaging these monthly-mean maps results in an annually 
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averaged global map of W.  From this single map, globally averaged annual W obtained 

with the new method is estimated to be 3.05%.   

These W values are consistent with previous estimates, especially those of 

Blanchard (1963).  But the validation on more regional scales (§3.4.3) showed that the 

new-method estimates are usually higher than the in situ measurements.  No doubt, one 

possible reason for these higher values is that the satellite retrievals may need tuning 

and improvement of the computational algorithm.  But it is also possible that the new 

method gives higher estimates of W because it measures both stages (A and B, i.e., 

active and decaying) of the whitecaps and uses daily instead of monthly data.   

4.2.2 Spatial characteristics of satellite-measured whitecap coverage 

The global spatial distribution of mean oceanic whitecaps for March 1998 

obtained with the new method is shown in Figure 4.2.  Whitecap coverage over most of 

the world ocean is up to 4%.  The lowest whitecapping, from less than 1% up to 2%, is 

evident along the equator, on the western edges of the continents, and east of the tip of 

South America.  The highest whitecapping, up to 6%, is observed in the zonal belts of 

the trade winds (15° to 30° N and S) and the prevailing westerlies (30° to 60° N and 

S).  The average whitecap coverage for March 1998 in the NH is 3.2%, and in the SH 

it is 2.7%.   

The spatial distribution of satellite-derived W, as already noticed in §3.4.2, 

is quite different from that obtained with the wind-speed formula displayed in 

Figure 4.3a.  Let us compare Figure 4.2 and 4.3a.  As W(U10) relation suggests, all 

previous evaluations inevitably predict high whitecap coverage in high latitudes, around 

and beyond 50-60° N and S, where the highest winds blow, whereas in mid and low 

latitudes the whitecapping is rarely above 1%.  The new method derives higher 



 119

whitecapping in mid and low latitudes compared to wind-formula predictions.  In this 

sense, the spatial distribution of whitecap coverage from satellite data, 

W(U10, ∆T, Ts, S, f, d, C), does not vary as much as the W(U10) relation implies. 

 
Whitecap coverage, W 

Figure 4.2 Mean whitecap coverage for March 1998 obtained with the new 
method (average of 31 daily maps of W).   

The spatial differences between new method results and wind-formula 

predictions are quantified in Figure 4.3b, which plots ∆W = Wnew method - Wwind formula.  In 

the figure, red shows positive ∆W, i.e., Wnew method > Wwind formula, and blue shows 

negative ∆W.  Systematically, the wind formula gives higher W values in high latitudes, 

6% to 10% (blue in the figure), while the new method estimates higher W,  
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a) 
Whitecap coverage, W 

b) 

∆W = Wnew method - Wwind formula 

Figure 4.3 a) Mean whitecap coverage for March 1998 computed with 
wind-speed formula (2.3) and daily values of wind speed;  
b) Difference ∆∆W between the mean W-values for March 1998 
obtained with the new method and wind-speed formula:  red shows 
Wnew method > Wwind formula; blue shows Wnew method < Wwind formula.   
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6-8% (red in the figure), in mid and low latitudes.  The magnitude of ∆W rarely 

exceeds ± 5%.   

The largest differences between the two computational methods are in a 

few places.  Though realistic as absolute values, these seem inconsistent with the 

neighboring values.  Such high and inconsistent W values are not only present in 

“difference” maps as the one shown in Figure 4.3 (not seen because of the land 

contours), but also in the averaged (monthly or annually) maps of W.  All positive large 

differences are along the edges of the continents; the large negative differences are in 

open ocean.  Large ∆W in the open ocean could be due to the interplay between wind 

speed and other environmental variables accounted differently by the two 

computations.  There are two possible explanations for the large ∆W along the 

continents.  First, they could be due to the flawed performance of SSM/I close to land, 

which is not noticeable in the daily maps, but “accumulates” in the averaged maps.  

Second, they could be a real physical feature due to either lower salinity in the coastal 

zone or more vigorous whitecapping due to topography, both accounted for by the new 

method and not included in the wind formula.  Finally, it is conceivable that they are 

artifacts left from the problem with re- sampling the salinity maps (§ WOA98 S data).  

Whatever the reason, however, the places with large ∆W are so a few, up to 1% of the 

useful values, that most probably they would not have any statistical significance when 

W data are used for different regressions.   

Though not large in magnitude, the differences in the W values point 

toward different physical processes affecting the whitecapping.  The most plausible 

explanation of the differences is that the new method takes into account not only the 
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influence of wind speed on W, but also the effects of other environmental variables.  

Monthly maps of U10, Ts, and S for March 1998 are plotted in Figure 4.4.  The spatial 

features of U10, Ts, and S help to track their impacts on the global W distribution in 

Figures 4.2 and 4.3a.  For instance, areas with high winds in mid and high latitudes 

(greenish pixels in Figure 4.4a) can be easily recognized as places with high W in Figure 

4.3a.  But while in Figure 4.3a high whitecapping in high latitudes is a dominant spatial 

feature, in Figure 4.2 the whitecapping in the high latitudes is suppressed by the lowest 

sea surface temperatures, from below 0°C up to 3°C (see Figure 4.4b).  The Southern 

Ocean and the northern reaches of the North Atlantic and North Pacific are good 

examples of this observation.  Meanwhile, the effect of moderated winds, up to about 

12 m s-1, in mid and low latitudes is enhanced by higher sea surface temperature, so that 

higher than expected whitecapping is observed.  This is especially evident in the tropics 

in all oceans.  The spatial features of the salinity field in Figure 4.4c show that high 

salinity, e.g., in mid latitudes in Atlantic and Indian Oceans, probably enhances 

whitecapping. 

The influence of Ts on W—suppressing the effect of higher U10 in high 

latitudes and enhancing the effect of lower U10 in mid and low latitudes—is expected.  

As Ts decreases, W decreases due to changes in water viscosity, which, in turn, invokes 

changes in the effectiveness of turbulent dissipation of the wind energy (Monahan and 

O’Muircheartaigh, 1986).  Water viscosity increases in cold waters, and this lowers the 

frequency of wave breaking and whitecapping since the turbulence effectively dissipates 

the excessive wind energy.  The opposite is true for warm waters where lower water 

viscosity makes the turbulent dissipation less effective, which therefore  
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a) 
Wind speed, U10 (m s-1) 

 

b) 
Sea surface temperature, Ts (°C) 

 

c) 
Salinity, S 

Figure 4.4 Monthly mean fields (March 1998) for: a) wind speed; b) sea surface 
temperature; c) salinity.   
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requires more wave breaking and whitecap formation in order to dissipate the wind 

energy.   

This effect of Ts on W explains the slowly changing trend of 

satellite-measured W in Figure 3.20 and is in agreement with previous considerations.  

Monahan and O’Muircheartaigh (1986) and Spillane et al. (1986) have observed a 

decrease in the exponent in the W(U10) relation for cold water.  Bortkovskii (1987) (his 

fig. 2.5) also shows a strong positive dependence of W on Ts: at the same wind speeds 

whitecapping in warm waters is higher than in cold water.  Accordingly, he proposed a 

linear dependence of W on U10 in cold waters.  Thus, the expected behavior of W with 

changes in Ts seems to be correctly reflected by the new method.   

More speculations can be added to explain the high whitecap coverage in 

mid and low latitudes.  Most certainly, the persistent trade winds and the long fetches 

in the tropics foster whitecapping there.  Also, in the central parts of the oceans the 

water is oligotrophic.  A low concentration of organisms leads, presumably, to a low 

concentration of surface-active materials, thus wave breaking is not suppressed by 

surfactants and whitecapping is enhanced.  In contrast, coastal upwelling west of Africa 

and South America, as well as high primary production in the Southern Ocean, could 

lead to more surfactants on the ocean surface, which would hinder wave breaking and 

diminish whitecapping.   

In summary, the new method estimates higher and more evenly distributed 

whitecapping over the globe compared to the predictions of the W(U10) relation.   

4.2.3 Temporal characteristics of satellite-measured whitecap coverage 

Figure 4.5 shows global maps of whitecap coverage for the four seasons.  

During the boreal winter (December-January-February), maximum whitecap coverage 
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is observed in the NH (panel a in Figure 4.5).  In spring (March-April-May), 

whitecapping in the northern parts of the Atlantic and Pacific decreases, while there is 

an overall increase of W southward (panel b).  In the boreal summer (austral winter) 

(June-July-August), maximum whitecap coverage is registered in the SH.  Whitecap 

coverage in trade winds belts in both hemisphere remains about 3-5% (panel c).  In the 

fall (September-October-November), there is 2-3% whitecapping in high latitudes 

(beyond 30° N and S), and about 3-6% in the tropics (panel d).  

Monthly values of whitecap coverage for both hemispheres are plotted in 

Figure 4.6a.  Whitecap coverage varies from 2.5% to 3.5%, i.e., seasonal changes vary 

by a factor of 1.4.  These variations are less than those estimated by Erickson et al. 

(1986).  This result is consistent with the conclusion of more even whitecap distribution 

predicted by the new method.  The globally-averaged monthly values of whitecap 

coverage (Figure 4.6b) are less variable, from 2.9% to 3.2%.  Yet a seasonal cycle on a 

global scale is evident.  The increase during the boreal summer (austral winter) is 

mostly due to the high whitecap coverage in the Southern Ocean, emphasizing its 

importance for air-sea processes involving whitecaps, such as sea-salt aerosol 

production, gas exchange, and planetary albedo.   

4.2.4 Implications of whitecap coverage estimates 

Besides being responsible for the production of sea-salt aerosols, oceanic 

whitecaps are involved in various processes at the air-sea interface.  Two of these  

processes—contribution of whitecaps to changes in planetary albedo and air-sea 

exchange of CO2—are considered in this section.   
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   a)        b) 

   c)        d) 
Whitecap coverage, W                                                                                    Whitecap coverage, W 

Figure 4.5 Boreal seasonal means of the global whitecap coverage for 1998 (maps 0.5 °°××0.5 °°):  a) winter 
(Dec-Jan-Feb); b) spring (Mar-Apr-May); c) summer (Jun-Jul-Aug); d) fall (Sep-Oct-Nov).  
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Figure 4.6 Monthly variations of whitecap coverage for 1998: a) in Northern 
and Southern hemispheres; b) globally.   
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 Whitecaps and ocean surface albedo 

We see whitecaps as bright white patches on the ocean surface due to their 

high reflectivity (§2.5.3).  High whitecap reflectivity led to the suggestion that sea foam 

might influence the shortwave albedo of the ocean-atmosphere system.  Gordon and 

Jacobs (1977) found that an increase in the wind speed from 6 to 14 m s-1 would 

double the surface albedo as highly reflecting sea foam appear.  They concluded that 

newly formed whitecaps could contribute to the radiation budget of the planet.   

Frouin et al. (2001) proposed a scheme, convenient for use in climate 

models, quantifying the effect of oceanic whitecaps on the global radiation budget.  

They estimated that the globally averaged radiative forcing of whitecaps, defined as 

changes in the outgoing radiative flux due to changes of surface albedo, lies in the 

range 0–0.14 W m-2 with a probable value of 0.03 W m-2.  This forcing could be larger 

on regional and seasonal scales with radiative forcing values reaching 0.7 W m-2 in the 

Indian Ocean during summer.   

Whitecap coverage, W, enters the parameterization scheme for the direct 

radiative forcing of oceanic whitecaps.  Frouin et al. (2001) parameterized W with wind 

speed.  Because global W obtained with the new method exhibits spatial features 

different from those obtained with wind speed, it is pertinent to re-calculate the 

radiative forcing of whitecaps.   

In quantifying the direct forcing of whitecaps, Frouin et al. (2001) follow 

the approach used by Charlson et al. (1992) for sulfate aerosols.  At any location over 

the oceans, the change in the outgoing radiative flux due to whitecaps is: 

 s
d

a
u

ac RTTAFF ∆−=∆ )1(00µ  

where F0 is the solar irradiance at the top of the atmosphere (solar constant), µ0 is the 

cosine of the sun zenith angle, Ac is the fraction of the surface covered by clouds, u
aT  
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and d
aT  are the clear-sky atmospheric transmissivity for up-welling and down-welling 

flux, respectively, and Rs is the albedo of the ocean surface.  Averaged on a global 

scale, this equation becomes: 

 0

1

0

00 )1(5.0 µµ dRTTAaFF s
d

a
u

ac ∫ ∆−≈∆  (4.1). 

Here, the factor of 0.5 is introduced because any point on the earth's surface is 

illuminated by sunlight half the time during a year, a is the fraction of annually averaged 

ice-free oceanic surface, and  denotes area averaging over the oceans.   

To estimate ∆Rs in (4.1), Frouin et al. (2001) represent the surface albedo, 

Rs, as a sum of reflections, analogous to (3.1): 

 wcws WRRWR +−= )1(  (4.2), 

where Rw is the albedo of foam-free water surface, Rwc is the albedo of foam-covered 

water, and W is the whitecap coverage; when W = 0, Rs = Rw.  The change in surface 

albedo due to whitecaps then is: 

 )( wwcwss RRWRRR −=−=∆  (4.3). 

Plugging (4.3) in (4.1) yields: 

 0

1

0

00 )()1(5.0 µµ dRRTTWAaFF wwc
d

a
u

ac ∫ −−≈∆  (4.4). 

For W , Frouin et al. (2001) use Monahan and O’Muircheartaigh’s (1980) relation, 
52.361095.2 UW −×= , where U  is globally averaged wind speed over a 10-year 

period.  This estimate can be replaced now with a globally and annually averaged 

estimate of W  for 1998 retrieved with the new method proposed here.  As reported 

in §4.2.2, the global annual value for W  is 0.0305, estimated over the ocean surface 

representing a fraction a = 0.46 of the global surface.  The solar constant is 
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F0 = 1372 W m-2.  For the globally averaged fractional cloud coverage, Frouin et al. 

(2001) use a climatological value averaged over 7 years (1983 to 1989):  cA  = 0.59.  

Using a radiation transfer model, Frouin et al. (2001) estimate the value of the integral 

to be ≈ 2.7×10-2.  With all these values, the global annual estimate for the direct 

radiative forcing due to whitecaps amounts to about 0.11 W m-2.   

Employing the global annual map of W produced with the new method, the 

spatial changes in the outgoing shortwave flux due to presence of whitecaps are 

depicted in Figure 4.7.  About 99% of the ocean surface provides F∆  in the range 

from 0 to 0.2 W m-2 with some values reaching 0.9 W m-2.  The largest increase of 

ocean albedo due to the presence of whitecaps is observed in the trade winds zones of 

the ocean, yielding an outgoing shortwave flux of 0.16 to 0.20 W m-2.  Most of the 

upwelling zones, east of North America and Asia, and the continental shelf east of the 

tip of South America have the lowest contribution to reflection of shortwave radiation, 

up to 0.04 W m-2.   

The most probable value for F∆  = 0.11 W m-2 evaluated with 

new-method-derived whitecap coverage is a factor of 3.7 higher than that reported by 

Frouin et al. (2001), 0.03 W m-2.  A possible reason for the difference is that the 

satellite-measured whitecap coverage gives higher W-values for mid and low latitudes 

than the wind formula predicts.  When averaged globally, this leads to higher global 

estimates of W  and F∆ .   

Similarly to the estimate of Frouin et al. (2001), the updated estimate of 

the direct radiative forcing of the whitecaps is small.  It is not negligible, though.  

Whitecaps, a natural agent for the climate system, provide cooling comparable to that 

due to anthropogenic agents such as stratospheric ozone (0.18 W m-2), biomass burning 
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(0.21 W m-2), and land use (0.22 W m-2) (IPCC, 2001).  In a warming world with a 

possible increase of wind speed (Latham and Smith, 1990; IPCC, 2001, p.65), whitecap 

forcing could increase.   

 
         Radiative flux changes, F∆  (W m-2) 

Figure 4.7 Global map (0.5 °°××0.5 °°) for 1998 of annually averaged changes in 
outgoing radiative flux F∆  due to presence of whitecaps on the 

ocean surface.  

 Whitecaps and transfer velocity of CO2 

Accurate estimates of air-sea gas fluxes are essential for understanding the 

global cycles of CO2, CH4, NOx, DMS and other trace gases that affect the earth’s 

radiation budget (Frew, 1997).  The flux, F (mass per unit time per unit area), of any 
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gas across the air-sea interface is proportional to its air-sea concentration difference, 

∆C, giving CkF T ∆=  (Liss, 1983).  The coefficient of proportionality, kT, has the 

dimension of velocity and is called the transfer (or piston) velocity.  Vigorous research 

is currently conducted to understand all mechanisms possibly contributing to the gas 

transfer across the air-sea interface, and embody them as accurately as possible in a 

parameterization of kT.   

Wind, waves, and the formation of bubble clouds, associated with 

whitecaps, enhance the direct diffusive flux of any gas, including CO2.  The transfer 

velocity is thus frequently parameterized in terms of wind speed U10 (Liss and Merlivat, 

1986; Tans et al., 1990; Wanninkhof, 1992).  However, the relation kT(U10) is not well 

constrained by field data (Wanninkhof, 1992).  Other factors, besides wind speed, 

contribute to the efficiency of the gas transfer, presumably sea surface temperature, 

atmospheric stability, wind speed variability, wind fetch, and surface-active materials.  

The effects of some of these factors were investigated to explain the scatter in 

experimental data.  Wanninkhof (1992) concluded that variability of wind speed and 

wind fetch, nonlinearity of the kT(U10) relation, and chemical effects for reactive species 

such as CO2 do not fully explain the variance in laboratory and field data.   

Monahan and Spillane (1984) parameterized kT for CO2 in terms of 

whitecap coverage, W.  Using this parameterization, Erickson (1993) evaluated the 

effect of atmospheric stability, ∆T, on kT by representing W as a function of wind speed 

and the stability-dependent drag coefficient.  He found that gas exchange is sensitive to 

variations in ∆T and suggested that ∆T forcing could account for the scatter in the 

experimental data.  Because global W obtained with the new method incorporates the 

effects of various environmental factors, an evaluation of kT(W) may give more realistic 
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kCO2 values and serve as a measure for what to expect when these factors act in 

concert.  Computations outlined by Erickson (1993) are used for this purpose.   

Analogously to (3.1) and (4.2), the transfer velocity can be written as a 

sum of contributions by:  i) molecular diffusion over most of the ocean area with no 

whitecaps; and, ii) turbulent processes within the whitecap-covered area (Monahan and 

Spillane, 1984): 

 wcwT WkkWk +−= )1(  (4.5), 

where kw is the transfer velocity through the foam-free water surface, kwc is the transfer 

velocity through foam-covered water, and W is the whitecap coverage; when W = 0, 

kT = kw.  Erickson (1993) used kw = 5.0 cm h-1 and kwc = 1300 cm h-1, determined via 

several model runs and comparison with data.  Since the initial set of kw and kwc used 

for this adjusting process was obtained from data for radon (Rn), kT computed with 

(4.5) is for Rn, i.e., kRn.  It is necessary, therefore, to convert kRn to kCO2 with the 

following expression (Erickson, 1993): 

 
n

s

s

TSc

TSc
kk 








=

)(

)(

Rn

CO2
RnCO2  (4.6) 

with an exponent, n, having values  

 
1

10

1
10

sm6.332

sm6.321
−

−

<−=

≥−=

Un

Un
 . 

Here Sc(Ts) denotes sea surface temperature dependence of Schmidt numbers for CO2 

and Rn.  Sc(Ts) is derived as a cubic polynomial regression fitted to data:  

 42 dxcxbxaSc +++=  (4.7) 

with x = Ts in °C and regression coefficients listed in Table A.5 (Appendix A).   



 134

For W, Erickson (1993) used the expression proposed by Wu (1975), 
3
*2.0 uW = , where the friction velocity can be computed as 10

5.0
* UCu D= .  The effect of 

atmospheric stability, ∆T, on kCO2 is introduced via the drag coefficient, CD, which can 

be determined from the bulk aerodynamic method.  All environmental variables, such as 

wind speed, humidity, and air and sea surface temperatures, used in the calculations are 

5-year model simulations.  Erickson (1993) presents the results for kCO2 in annual and 

monthly (January and July) maps of kCO2.   

This study estimates annual kCO2 for 1998 in three steps:  i) kRn is calculated 

with (4.5) using the chosen values for kw and kwc and new-method-derived global 

annually (or monthly) averaged maps of W; ii) the Schmidt numbers for CO2 and Rn are 

estimated with (4.7) employing annual (or monthly) mean fields of Ts; iii) kCO2 is 

evaluated with (4.6) using the results from steps i) and ii).  Due to the linearity of (4.5), 

the use of annually (or monthly) averaged instead of daily estimates of W would not 

impact the kCO2 results, and would be suitable for comparison with Erickson’s (1993) 

computations.   

Figure 4.8 shows global distribution of annually averaged transfer velocity 

for CO2 in cm h-1.  On a global scale, kCO2 ranges from 5 to 150 cm h-1, with most 

probable values around 50.0 cm h-1.  High values, up to about 400 cm h-1, are 

sporadically encountered in so a few places (0.3% of all estimates) that they do not 

change the overall result at all.  For the range up to 150 cm h-1, high kCO2 values (above 

60 cm h-1) are observed in the trade winds zones in all oceans (5° N to 30° N and 5° S 

to 30° S).  The values in the Southern Ocean (40° S to 60° S) are in the 50-70 cm h-1 

range.  The lowest kCO2 values, from 5 to 40 cm h-1, are along the equator, in upwelling 

zones, and east of North America and Asia coasts.  The global average value of CO2 
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transfer velocity is kCO2 = 56.8 cm h-1.  These results differ in kCO2 absolute values and 

resemble in kCO2 spatial distribution those reported by Erickson (1993).   

 
         CO2 transfer velocity, kCO2 (cm h-1) 

Figure 4.8 Global map (0.5 °°××0.5 °°) for 1998 of annually averaged CO2 transfer 
velocity estimated from annual whitecap coverage obtained with the 
new method. 

Erickson (1993) has listed a global mean kCO2 value of 20.9 cm h-1.  On one 

hand, such a value compares well with global mean kCO2 data measured via bomb and 

natural 14C methods (Broecker et al., 1986), about 21.5 cm h-1.  The global mean 

estimate of kCO2 in this study is a factor of 2.7 higher than Erickson’s (1993).  It is 

lower, however, than the controversial data obtained with the eddy correlation method, 

usually an order of magnitude higher than those from carbon method measurements 
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(Broecker et al., 1986; Frew, 1997).  On the other hand, Erickson’s (1993) estimates 

differ from those obtained with alternative parameterizations.  His data are consistently 

higher (by 20 to 80%) than those obtained with Liss and Merlivat (1986) scheme, 

which produces kCO2 values up to 20 cm h-1.  Erickson data are usually, though not 

always, lower (by 20 to 40%) than those published by Tans et al. (1990), whose values 

are up to 80 cm h-1 on a seasonal scale.  Thus, the present study estimates are 

consistent with values resulting from some of the parameterizations proposed.  In view 

of the uncertainties in the measuring techniques (Phillips, 1997) and the absence of 

adequate parameterization of kCO2 (Frew, 1997), the values estimated in this study 

should be given attention since they intrinsically account for the effects of all 

environmental variables acting together and are, therefore, closer to the real ones.   

As expected, the spatial distribution of kCO2 estimated in this study mimics 

that of the whitecap coverage (though Figure 4.2 shows a monthly averaged W map, it 

can still serve as a guide for comparison).  Such a spatial distribution, while different, is 

not far from the gross features of the kCO2 maps shown by Erickson (1993).  If Erickson 

(1993) had used the relation W(U10) alone, the spatial distribution of his kCO2 maps and 

those in Figure 4.8 would have been much more different, as different as are the spatial 

features in Figures 4.2 and 4.3a.  Because Erickson (1993) used W(U10, ∆T) instead, 

the spatial features in his kCO2 maps are closer to reality and hence resemble those 

evaluated with the new-method estimates of W.   

The major differences between the kCO2 spatial distributions in Erickson’s 

and the present study maps are in the equatorial regions.  In Erickson’s maps, low kCO2 

values are spread wide along both sides of the equator—regions generally thought of as 

strong sources of CO2 (Volk and Liu, 1998).  The most probable reason for this 
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deficiency of Erickson’s model is the difficulty in accurately estimating CD under low 

wind conditions usual for the equatorial area.  Meanwhile, the present study shows high 

kCO2 values in these regions, fostering the well-accepted contention that sea surface 

temperature affects the gas transfer.  High kCO2 values computed in this study coupled 

with high negative concentration gradients, ∆C (Asher, 1997), reveal the Southern 

Ocean as a major sink of CO2, confirming another well-accepted opinion in the 

gas-exchange community.   

4.3 Parameterization of whitecap coverage  

The new method gives estimates of whitecap coverage, W, containing the 

effects of environmental parameters such as wind speed, U10, atmospheric stability, ∆T, 

sea surface temperature, Ts, salinity, S, wind fetch, f, wind duration, d, and surfactant 

concentration, C.  To model various processes coupled with W, it is necessary to 

parameterize W in terms of these variables.  Thus, the next goal of this study is 

extending the existing wind speed relation (2.3) from a W(U10) form to a form including 

the effects of additional factors, W(U10, ∆T, Ts, S, f, d, C).  This section documents the 

search for approaches and implementation procedures achieving this goal, and reports 

initial results.   

This study does not pursue parameterization of the entire suit of relations 

in W(U10, ∆T, Ts, S, f, d, C) since data for f, d, and C are not readily available.  

Monahan and O’Muircheartaigh (1986) have proposed an expression for the 

W(U10, ∆T) relation and the effect of ∆T is not further considered here.  The whitecap 

coverage database, built with the new method, contains information suitable for 

extracting the empirical relations involved in W(U10, Ts, S).   
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4.3.1 Regression analysis 

Regression analysis is a traditional and reliable tool for analyzing 

observational data and deriving empirical relationships between observed variables.  

Regression procedures find an equation and a line, straight or curved, that best fits the 

behavior of a dependent variable Y when an independent variable X is varied.  

Coefficients entering the equations and connecting the independent and dependent 

variables, called regression coefficients, could be estimated from a set of n observations 

(values) of these variables, (Xk, Yk), where k = 1, 2, …, n.  Regression analysis defines 

the linearity and non-linearity of a regression model by considering its regression 

coefficients (Ratkowsky, 1990).  A regression model, in which all coefficients appear 

linearly, is a linear regression model.  A cubic polynomial, Yk = y0 + aXk +bXk
2 +cXk

3 , is 

an example of a linear regression model because the regression coefficients y0, a, b, and 

c appear linearly.  A regression model, in which at least one of its coefficients appears 

nonlinearly, is a nonlinear regression model; a power law, Yk = aXk
b, is a nonlinear 

regression model.   

There are various methods for estimating the regression coefficients.  The 

most popular one is the method of least squares, which seeks the values of the 

regression coefficients that minimize the sum of the squared differences between the 

observed and predicted values of the dependent variable, Y.  The least-squared 

estimates are optimal when the analyzed data fulfill two assumptions:  normality and 

constant variance.  The normality assumption requires the observed data (Xk, Yk) to be 

normally distributed around the regression line.  The constant variance assumption 

requires the variances of the dependent variable values, σYk, to be constant regardless of 

the values of the independent variable, Xk.  The least-squared regression procedure 

must test if the set of observations (Xk, Yk) fulfills these two assumptions.  Failure of the 
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normality test indicates the presence of outlying influential points among the set of 

observations or an inappropriate regression model.  If the constant-variance test fails, a 

different regression model should be considered or the values of the independent 

variable, Xk, must be transformed to obtain stable variances, σYk.   

The choice of a regression model is not an easy task.  If previous studies or 

underlying theory point toward an appropriate mathematical expression, this expression 

should be used as a regression model.  If there is not a suggested mathematical model, 

and there is a single independent variable (X), various equations should be plotted 

against the data and the one that matches the data trend best should be chosen.  If 

several independent variables (X1, X2 and so on) are candidates for explaining the 

behavior of Y, a multiple linear regression model should be tried.   

A useful guideline when choosing a regression model is the famous dictum, 

known as Occam’s razor, that “Plurality should not be assumed without necessity” 

(Ratkowsky, 1990).  This principle expresses the belief, not only in this particular case 

of regression analysis, but also in any other scientific endeavor, that simplicity is to be 

preferred to complexity.  Often attempts to fit a complicated regression model where a 

simple one suffices fail.  The estimates of an over-parameterized model containing 

unnecessarily numerous terms and coefficients are usually severely biased compared to 

the estimates of a simpler model with good statistical properties.   

Good statistical properties show that a chosen regression model fits the set 

of observations well.  Numerous statistical properties helping the assessment of model 

performance have been established in the specialized literature (Ratkowsky, 1990; 

Birkes and Dodge, 1993).  Among these, the following three statistical properties are 

the most informative.  The squared correlation coefficient, R2, is a reliable measure for 
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the performance of a linear regression model:  the closer R2 value to 1, the better the 

model equation describes the relation between the independent and dependent 

variables.  The standard error of the estimate, σY|X, is a measure of the variability of the 

observations (Xk, Yk) about the regression line.  Generally, the observed values should 

fall within about two standard errors around the line of the regression model.  A 

magnitude of standardized residuals is a gauge for the performance of a nonlinear 

regression model; R2 is not useful at all in judging a nonlinear model.  The standardized 

residual is defined as the difference between the predicted and observed values of the 

dependent variable Y divided by the standard error of the estimate, σY|X.  The model is 

performing well when the standardized residuals are in the interval from –2 to +2.  

Residual values outside this interval indicate outlying points.  In addition, the residuals 

should not exhibit a consistent trend; they should be randomly spread around zero.   

4.3.2 Implementation 

Regression analysis is used in this study for extracting the empirical 

relations between whitecap coverage, W (a dependent variable, i.e., Y = W), and wind 

speed, U10, sea surface temperature, Ts, and salinity, S (independent variables, i.e., 

X = U10 or Ts or S).  The least square method is employed for estimating the regression 

coefficients.  The regression analysis is applied to the W estimates with relative errors, 

r.e.W = σW / W, below 100% and the environmental variables U10, Ts, and S 

corresponding to them.  These are the “good” data in Part 2 of the whitecap coverage 

database (Table 4.1).   

 Parameterization approach 

Two approaches for parameterizing W(U10, Ts, S) are possible.   
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The first approach is multiple regression analysis.  Applying multiple 

regression analysis to W estimates, which contain the effects of all environmental 

variables, would derive a mathematical formula expressing the combined effect of U10, 

Ts, and S.  However, one should be cautious choosing this approach as a first step in 

parameterizing whitecap coverage.  As the review in §2.5.1 shows, the effects of the 

environmental variables are only qualitatively discussed in the literature and quantitative 

expressions are not offered.  These variables influence the whitecapping differently and 

with opposing results.  Most certainly, a tractable mathematical function, e.g., a simple 

combination of linear terms each representing one variable, would not suffice to 

describe the overall behavior of W(U10, Ts, S).  In addition, there are not theoretical 

suggestions helping a construction of a more complex mathematical expression.  The 

Occam razor principle further supports this caution.   

Thus, the second approach, a single-variable regression analysis, seems 

appropriate for a first attempt to parameterize W(U10, Ts, S).  Performing a 

single-variable regression analysis, it is possible to extract the whitecap coverage 

dependence on each environmental variable separately, i.e., W(U10), W(Ts), and W(S).  

Then, these can be combined to derive an expression for their effect in concert: 

 )()()(),,( 1010 SWTWUWSTUW ss ⋅⋅=  (4.8) 

Derivation of one relation at a time, W(U10), W(Ts), or W(S), with this approach would 

also give the possibility to investigate the various effects on the whitecapping 

separately and evaluate their relative contribution to whitecap coverage.   

Previous considerations (Monahan and O’Muircheartaigh, 1986) have 

shown, and Figure 3.20 confirms, that most probably W(Ts) and W(S) are not strong 

dependencies by themselves, but they may affect significantly the coefficients in the 
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power law of the wind dependence, W(U10) = aU10
b, especially the exponent b.  

Accepting this suggestion, the parameterization of W(U10, Ts, S) may proceed as a 

revision of the W(U10) relation aiming the inclusion of the Ts and S effects in its 

coefficients.  For instance, using as an example the widely recognized power law for 

W(U10), the parameterization can be represented as: 

 ),(
1010 ),(),,( STb

ss
sUSTaSTUW =  (4.9a) 

The same approach can be used with any other mathematical function that may express 

W(U10) plausibly, for instance, an exponential law: 

 [ ]1010 ),(exp),(),,( USTbSTaSTUW sss ⋅=  (4.9b) 

The dependence of coefficients a and b on Ts and S can be expressed as: 
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 (4.10) 

where each of the dependencies a(Ts), a(S), b(Ts), and b(S) can also be obtained with a 

single-variable regression analysis.  Note that the regression coefficients could be more 

than a and b if W(U10) is represented by a mathematical law other than 4.9.   

Single-variable regression analysis and the use of (4.9)–(4.10) comprise the 

approach chosen in this study to parameterize W(U10, Ts, S).   

 Data binning 

To apply single-variable regression to a dependent variable affected by 

several independent variables, any of the analyzed dependent-independent pairs should 

be processed at all remaining independent variables held constant.  For instance, to 

revise the W(U10) relation, single-variable regression analysis should be applied to a set 

of (Wk, U10,k) values at constant Ts and S.  Thus, to prepare the W estimates and their 
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corresponding U10, Ts, and S values for such analysis, the data must be allocated into 

bins within which S and Ts remain approximately constant.   

Data are not binned by the values of f, d, and C.  Their effects on the data 

are excluded by narrowing the range of the considered S-values.  The full range of 

observed S-values (used unabridged to derive W estimates with the new method in 

Chapter 3) is from 3.42 to 42.22 psu with most S-values clustered in the range of 20-40 

psu.  Higher S-values, around 35 psu, are usual for open ocean conditions.  Salinity 

values below 20 psu are characteristic of coastal zones, where, compared to 

open-ocean conditions, the wind fetch, f, is shorter, the wind duration, d, is more 

variable due to the land proximity, and surface active material, C, is more abundant due 

to a higher amount of nutrients delivered by river run off.  Bottom topography 

additionally affects wave breaking and W in coastal zones.  Thus, narrowing the range 

of S-values excludes the coastal zone influences on W.   

The range of S-values used for regression analysis is from 33 to 37 psu.  

Only about 5% of the pixels with useful W estimates are lost as a result of this 

restriction.  The salinity range from 33 to 37 psu is divided in 20 salinity bins each with 

0.2 psu width.  This number of salinity bins results from applying the rule of thumb 

(Panofsky and Brier, 1958):  the number of necessary bins is 5 log m, m being the 

number of observations available for distribution in bins; m is around 14,000.   

Using the S-values falling within a given S-bin as a reference, all W 

estimates for a particular S-bin, together with their corresponding σW, r.e.W, U10, Ts, and 

S values, are extracted from the daily files with “good” data (Table 4.1, Part 2) and 

stored in a new text file.  This results, in total, in about 7,300 text files:  365 daily text 

files containing W, σW, r.e.W, U10, Ts, and S for each of the 20 salinity bins.  These files 
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are organized in 12 (monthly) directories each containing 20 directories—one for each 

salinity bin.   

Next, the data within each S-bin are divided in 12 temperature bins each 

with a width of 3 °C covering the entire range of sea surface temperature from –1.8 to 

33 °C.  Table 4.2 lists the values of all salinity and sea surface temperature bins.  

Similarly to the salinity binning, the Ts-values falling within a given Ts-bin are used as a 

reference to extract the necessary W estimates and their corresponding additional 

variables for a particular Ts-bin.   

 Sets of observations 

How many observations, n, should a set prepared for regression analysis, 

i.e., binned by S and Ts, have?  An attempt was first made to proceed with regression 

analysis using observations (Wk, U10k), k = 1, 2, …, n, for one day.  The number of 

observations, n, turned out to be insufficient to reveal the W(U10) relation.  Too often 

only 1 or 2 points were available for a particular combination of S- and Ts-bins.  The 

next attempt was to run regressions using observations (Wk, U10k) for all days in a 

month.  In this case, very often the points were too many, above 7,000, and any trend, 

if present, was lost in the variability of data.  

A decision was then made to construct sets of observations including 

(Wk, U10k) values for 8 consecutive days.  In this way, the number of observations in a 

set formed for given Ts and S-bins usually ranges from 10 to 2,000.  There are 

exceptions:  for the S-bins around 35 psu, some Ts-bins may still have more than 3,000 

points, and some Ts-bins in the lower (close to 33 psu) and higher (close to 37 psu) 

salinity ends may not include any observations.  Such cases, however, are more rarely 
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encountered compared to the formation of sets with 1-day or 30-day observations.  

Grouping the observations for 8 days allows 4 observational sets for each Ts-bin within 

Table 4.2 Values for salinity, sea surface temperature, and wind speed bins. 

Salinity bins Sea surface temperature 
bins 

Wind speed bins 

Bin 
name 

Bin 
center 

psu 

Bin  
range 
psu  

Bin 
name 

Bin 
center 

°C 

Bin  
range  

°C 

Bin 
name 

Bin 
center 
m s-1 

Bin  
range  
m s-1 

S1 33.1 33.0-33.2 T1 -0.9 -1.8-0.0 U1 4.0 3.0-5.0 
S2 33.3 33.2-33.4 T2 1.5 0.0-3.0 U2 6.0 5.0-7.0 
S3 33.5 33.4-33.6 T3 4.5 3.0-6.0 U3 8.0 7.0-9.0 
S4 33.7 33.6-33.8 T4 7.5 6.0-9.0 U4 10.0 9.0-11.0 
S5 33.9 33.8-34.0 T5 10.5 9.0-12.0 U5 12.0 11.0-13.0 
S6 34.1 34.0-34.2 T6 13.5 12.0-15.0 U6 14.0 13.0-15.0 
S7 34.3 34.2-34.4 T7 16.5 15.0-18.0 U7 16.0 15.0-17.0 
S8 34.5 34.4-34.6 T8 19.5 18.0-21.0 U8 18.0 17.0-19.0 
S9 34.7 34.6-34.8 T9 22.5 21.0-24.0 U9 20.0 19.0-21.0 

S10 34.9 34.8-35.0 T10 25.5 24.0-27.0 U10 22.0 21.0-23.0 
S11 35.1 35.0-35.2 T11 28.5 27.0-30.0 U11 24.0 23.0-25.0 
S12 35.3 35.2-35.4 T12 31.5 30.0-33.0 U12 26.0 25.0-27.0 
S13 35.5 35.4-35.6    U13 28.0 27.0-29.0 
S14 35.7 35.6-35.8    U14 30.0 29.0-31.0 
S15 35.9 35.8-36.0    U15 32.0 31.0-33.0 
S16 36.1 36.0-36.2    U16 34.0 33.0-35.0 
S17 36.3 36.2-36.4       
S18 36.5 36.4-36.6       
S19 36.7 36.6-36.8       
S20 36.9 36.8-37.0       

 

a given S-bin for each month.  Each observational set is saved in a new text file.  There 

are 960 (= 4(sets)×12(Ts-bins)×20(S-bins)) such files for a month saved in the 

directories allotted for the S-bins (Table 4.1, Part 2).  From the perspective of the 

entire 1998, there are 48 sets (= 4(sets)×12(months)) for each combination of Ts-S bins.   
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Figure 4.9 plots the W(U10) observations comprising set #1 for March 1998 

(Julian days 60 to 67) for all 12 Ts-bins in salinity bin S5 (Table 4.2).  In the figure, W 

estimates are given with their standard deviations only for temperature bin T2; for the 

other plots, the error bars are omitted to avoid cluttering the graphs.   

Note in Figure 4.9 that though the number of observations in a set 

(observations for 8 days) reveals a trend in the data well, some variability in W 

estimates remains.  When least-square regression is applied to the data, this variability 

often leads to the failure of either normality or the constant variance test, precluding an 

estimation of regression coefficients for some Ts-bin.  This, in turn, diminishes the 

reliability of obtaining a(Ts) and b(Ts) relations.   

Smoothing the data within each Ts-bin circumvents this problem.  The 

smoothing is achieved by dividing the wind speed range from 3 to 35 m s-1 into 16 bins, 

each 2 m s-1 wide (Table 4.2), and averaging the W values coupled with the U10 values 

in each U10-bin.  In this way, the variability is effectively removed and a smooth curve 

represents the W(U10) trend for each Ts-bin.  These smoothed curves are shown in 

Figure 4.9 with gray lines. 

Regression models are applied to these smoothed curves.  Initially, a group 

of regression coefficients (2 or more coefficients, depending on the mathematical 

function chosen for a regression) was determined for each of the 4 observational sets 

available for a month.  Then these 4 groups of coefficients were averaged to obtain one 

group of coefficients for each Ts-bin.  Though this is the most rigorous way to estimate 

the regression coefficients, this procedure shows two deficiencies:  i) high variability of 

the coefficient values from one set to another; and ii) inability to construct a complete 

temperature dependence of the coefficients, e.g., a(Ts) and b(Ts).  The reason  
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Figure 4.9 The relation W(U10) for March 1998, observational set #1 (Julian 
days 60 to 67) in 12 Ts-bins at salinity bin S5 (S = 33.8 - 34.00 psu). 
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for these deficiencies is the fact that W(U10) relation is not fully presented in all Ts-bins.  

Figure 4.9 illustrates the problem:  relation W(U10) is well expressed covering a 

relatively wide range of wind speeds (up to 24 m s-1) only in some temperature bins, 

e.g., T2 to T7.  For other temperature bins the range of available U10 values does not 

exceed 12-14 m s-1, e.g., T1 and T8 to T12.  In these temperature bins, only a short 

section of the real W(U10) relation is available and cannot be used reliably to extract an 

empirical expression.   

How can we ensure observational sets long enough to extract a 

trustworthy W(U10) relation in all Ts-bins?  Two considerations help to construct such 

observational sets.   

The first consideration is related to the salinity value.  A survey of data for 

various S-bins shows that as salinity changes, the range of U10 values available for 

regressions may improve in the Ts-bins understated in Figure 4.9.  The improvement in 

representing the W(U10) relation in the understated Ts-bins, however, is often 

accompanied with a deterioration of the W(U10) relation in the Ts-bins well represented 

in Figure 4.9.  Moreover, looking for long enough observational sets in various salinity 

bins would compromise the requirement of holding S constant, which is necessary for 

applying a single-variable regression analysis.  A final result of this survey is the choice 

of the salinity bin to be held constant:  S5 (S = 33.8 to 34.0 psu).  This salinity bin not 

only encompasses the most likely salinity values encountered in open ocean, but also 

offers the largest number of Ts-bins with relatively long (Wk, U10k) sets.   

The second consideration in constructing long observational sets for 

W(U10) in all Ts-bins at a chosen S-bin is related to the use of the observational sets.  
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Instead of using them separately, the smoothed curves for all 4 observational sets 

available for a month are averaged.  This yields one long averaged observational set.  

Indeed, some of the points in the averaged observational set may happen to be the 

average of 2 or 3 points, instead of 4.  It may even happen that only one point is 

available for some wind speed values.  But this approach certainly provides the longest 

possible observational sets (Wk, U10k) in all Ts-bins.   

The procedure of constructing one long averaged observational set for 

each Ts-bin would be valid only if the 4 observational sets available for a month are 

stationary and do not exhibit a systematic trend in the course of the month.  This 

stationarity is verified by the similarity of the smoothed curves for all 4 sets 

(Figure 4.10) and the lack of variability in the averaged W estimates for each set 

(Figure 4.11).  Figure 4.12 piles the averaged observational sets for all Ts-bins at S5.   

In a similar manner, averaged observational sets are constructed for 12 

salinity bins (S1, S3, S5, S7, S9, S11, S12, S13, S15, S17, S19, S20) at T8 

(Figure 4.13).  The choice of the sea surface temperature bin to be held constant (T8 

with Ts from 18.0 to 21.0 °C) offers the largest number of S-bins with relatively long 

(Wk, U10k) sets.   

 Regression models 

Three regression models are chosen for the regression analysis of W(U10).   

The choice was done among numerous possible functions, some coming of 

interest from previous studies, others because they apparently fit the trend of the data 

well.   

Various regression equations, usually modified to meet the specifics of this 

study, and diagnostic tests available from Sigma Plot software were used in this  
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Figure 4.10 All 4 observational sets for the W(U10) relation for March 1998.   
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Figure 4.11 Average whitecap coverage for each observational set in all Ts-bins 
at salinity bin S5.   
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Figure 4.12 Averaged observational sets of the W(U10) relation for March 1998 
in all Ts-bins at salinity S5. 

investigation.  The performance of the applied regression models was assessed by 

examining:  i) the passing or failing of normality and constant-variance tests; ii) the 

squared correlation coefficient, R2; and iii) the magnitude and distribution pattern of 

standardized residuals.  The three chosen regression models are the ones that have 

shown the best statistical properties:  low standard error of the estimate, σY|X, high 

squared correlation coefficient, R2, and magnitude of standardized residuals in the ±2 

range.   

The chosen regression models, with x ≡ U10 and y ≡ W, are: 

1) Cubic polynomial:  y = ax + bx2 + cx3—linear model; 

2) Power law:  y = axb—nonlinear model; 
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3) Exponential law:  y = aebx—nonlinear model; 

These regression models are interesting not only for their good statistical 

properties, but also because they are suggested by previous theory.  Model 1 (cubic 

polynomial) combines linear, quadratic, and cubic dependencies on U10, all suggested 
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Figure 4.13 Averaged observational sets of the W(U10) relation for March 1998 
in all S-bins at sea surface temperature T8. 

in previous studies (Blanchard, 1963; Wu, 1975; Bortkovskii, 1983).  Besides, it is a 

linear model, the simplest of all chosen models, and, as Occam Razor suggests, should 

be tried first.  Model 2 (power law) represents the currently used expression (2.3).  

Applied to the satellite-derived estimates of W, however, this model does not perform 
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better than any other.  Model 3 (exponential law) is often suggested and used to obtain 

aerosol concentration in the atmosphere from wind speed (Lovett, 1978, Erickson et 

al., 1986).  Applied to the satellite W estimates, Model 3 often performs better than 

Model 2.   

These three models are applied to all averaged observational sets for 

March 1998 shown in Figures 4.12 and 4.13.  As a result, the relation W(U10) is 

represented by a cubic polynomial, a power, and an exponential laws.  Regression 

coefficients are estimated for each of these models, once for all Ts-bins at S5 and then 

for all S-bins at T8.  The coefficient values for each Ts-bin provide the sea surface 

temperature dependence of the regression coefficients, e.g., a(Ts).  Analogously, the 

coefficient values for each S-bin provide the salinity dependence of the regression 

coefficients, e.g., a(S).   

The sets of values for a(Ts), a(S), and all other regression coefficients 

derived for W(U10) relation are now subjects of a second regression.  In this second 

regression the independent variables are the temperature and salinity, i.e., X ≡ Ts, or S, 

and the dependent variables are the regression coefficients from the first regression to 

W(U10), i.e., Y ≡ a, b, or c.   

The steps of searching an appropriate regression model among various 

mathematical functions, determining a regression model with the best statistical 

properties, and applying this model to a(Ts) and a(S) dependencies are repeated.  The 

newly estimated regression coefficients are the values sought.  Once specific 

mathematical expressions for a(Ts) and a(S) are determined, they are used to obtain 

a(Ts, S) with (4.10).  The same is done for the regression coefficient b and c.   
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The concrete expressions for the regression coefficients a(Ts, S), b(Ts, S), 

and c(Ts, S) enter the corresponding regression model parameterizing W(U10):  cubic 

polynomial, power (4.9a), or exponential (4.9b) law.  The result is a W(U10) relation 

revised to include parameterization of the sea surface temperature and salinity effects 

on whitecap coverage, i.e., a parameterization of W(U10, Ts, S).   

4.3.3 Results 

 Sea surface temperature dependence 

Following the implementation steps outlined in the previous section, the 

sea surface temperature dependence is parameterized.  Figure 4.12 reveals that the sea 

surface temperature dependence is not a clear-cut case.  As expected, the effect of 

temperature is not strong by itself (the modest spread of the W(U10) curves at different 

Ts confirms that), yet it brings noticeable changes.  These changes do not follow a 

monotonic function, e.g., a clear increase or a decrease with Ts.  Rather, there are 

subtle changes in the slopes or slight “jumps” in the magnitudes of the W(U10) curves at 

higher Ts.  Compare, for instance, the curves for bins T8 (gray circles), T9 (brown), 

T10 (dark green) and T11 (dark yellow) to the curves for the rest of the Ts-bins.  A 

clear decrease (T5, blue) or flattening (T2, red) of the W(U10) curves at high winds, not 

predicted by (2.3), is evident.  The distinct W(U10) behavior at the lowest sea surface 

temperatures (T1, black) is most probably a consequence of the scarcity of data at 

these temperatures.   

The cubic polynomial, power, and exponential laws are the three regression 

models applied to each of the W(U10) curves in Figure 4.12.  A first batch of regression 

coefficients is produced estimating regression coefficients for each regression model at 



 156

each Ts-bin.  The values of regression coefficients for each model are plotted as a 

function of sea surface temperature.  Figure 4.14 illustrates this for the regression 

coefficients a, b, and c of the cubic polynomial model.   
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Figure 4.14 Regression coefficients a, b, and c for cubic polynomial applied to 
W(U10) as a function of sea surface temperature.   

A second regression is now performed on each of the regression 

coefficients in this first batch.  For each regression coefficient in the batch, a regression 

model with the best statistical characteristics is determined and its regression 

coefficients are estimated.  Figure 4.15 demonstrates this step for the temperature 

dependence of the regression coefficients, a(Ts) and b(Ts), of the power-law model 

applied to W(U10).  Table 4.3 summarizes the estimated values of the regression 

coefficients for the power and exponential regression models applied to the W(U10) 

curves.  These are the values determining the sea surface temperature dependence.   
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Figure 4.15 Values and regression curves for the sea surface temperature 
dependence of the regression coefficients a and b resulting from the 
power-law model applied to W(U10).   

 Salinity dependence 

Figure 4.13 shows that over the salinity range from 33 to 37 psu, the 

salinity invokes little change in the behavior of W(U10):  the slopes of the curves do not 

change and the magnitudes are similar.  Once again, the widest changes are observed 

for the salinity bins with least available data.  In spite of the anticipation of weak, if any, 

salinity dependence, the procedure of parameterizing the salinity effect was carried out.   

The power-law regression model only was applied to all the W(U10) curves 

in Figure 4.13, W = aU10
b.  A pair of values for the regression coefficients a and b is 

estimated for each salinity bin.  These are plotted as a function of salinity in Figure 4.16 

(circles).  A second regression with a model having acceptable statistical properties is 

applied to a(S) and b(S) (solid lines in Figure 4.16) and a  
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Table 4.3 Regression coefficients parameterizing the sea surface temperature 
dependence in the power-law and exponential-law models applied to 
W(U10).   

Model to W(U10) Model to Coef.(Ts) Parameterization R2 σCoef|Ts 

Power 
W = aU10

b 
Cubic polynomial 

3
2

2
210)( ssss TaTaTaaTa +++=

 

a0 = 6.779×10-3 
a1 = -1.83×10-3 
a2 = 1.917×10-4 
a3 = -3.778×10-6 

0.83 0.0045 

 Cubic polynomial 
3

2
2

210)( ssss TbTbTbbTb +++=
 

b0 = 0.7566 
b1 = 6.096×10-2 
b2 = -6.547×10-3 
b3 = 1.276×10-4 

0.83 0.1726 

Exponential 
W = aexp(bU10) 

Cubic polynomial 
3

2
2

210)( ssss TaTaTaaTa +++=
 

a0 = 0.0194 
a1 = -3.449×10-3 
a2 = 3.413×10-4 
a3 = -7.633×10-6 

0.63 0.0062 

 Cubic polynomial 
3

2
2

210)( ssss TbTbTbbTb +++=
 

b0 = 0.0561 
b1 = 3.655×10-3 
b2 = -3.478×10-4 
b3 = 6.016×10-6 

0.65 0.0166 

 

parameterization of a(S) and b(S) is obtained.  Including the parameterized a(S) and 

b(S) in the W(U10) parameterization, however, renders erroneous W values.  The weak 

dependence of W on S yields very low values for the regression coefficients, especially 

a(S).  Obviously, the range of salinity considered, 33 to 37 psu, is too narrow and 

extending the parameterization outside this range does not reproduce the real changes 

correctly.   

Wind-speed dependence—revised 

Since the parameterization of a(S) and b(S) fails, the wind-speed 

dependence is revised to include the parameterization of sea surface temperature effect 

only, changing (4.9) to: 
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where a(Ts) and b(Ts) are listed in Table 4.3 for the power-law and exponential-law 

models.   
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Figure 4.16 Values and regression curves for the salinity dependence of the 
regression coefficients a and b resulting from the power-law model 
applied to W(U10).   

Employing the a(Ts) and b(Ts) parameterizations in Table 4.3 and (4.11), 

whitecap coverage, W, is estimated.  Monthly (March 1998) values for U10 and Ts 

along a North-South line (31.8° N to 60.45° S) in the Pacific Ocean (133.4° W) are 

used for the calculations.   

Results for the power-law parameterization of W(U10, Ts) are displayed in 

Figure 4.17.  Panel a in the figure compares parameterized W estimates (open circles)  
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Figure 4.17 Performance of the power-law parameterization:  a) comparison 
between satellite-measured W (light gray circles), W(U10,Ts) 
parameterization (open circles), and W(U10) parameterization (dark 
gray circles); b) comparison between satellite-measured W and 
W(U10,Ts) parameterization.   

with the satellite-derived W (light gray circles) and the W(U10) estimates with (2.3) 

along the same North-South line.  Generally, the parameterization succeeds in 

producing W-values comparable in magnitude with those from satellite data, and 

exhibiting higher variability than (2.3) estimates.  The parameterization fails to 

reproduce the full range of variations in W displayed by the satellite-derived estimates.  

Panel b in Figure 4.17 clearly shows that the power-law parameterization of W(U10, Ts) 

largely overestimates W and does not predict well the lower W-values.   

Results for the exponential-law parameterization of W(U10, Ts) are 

displayed in Figure 4.18 in a fashion similar to that in Figure 4.17.  Panel a in the figure 

shows that the exponential parameterization model compares better with the 

satellite-derived W, especially in the 2% to 4% range of W, than the power-law 
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parameterization.  This is confirmed in Figure 4.18b from the clustering of the W 

estimates in the range from 2% to 4 % close to the 1-to-1 line.  But it is also evident 

that the exponential-law parameterization does not predict well the low (< 2%) and the 

high (> 4%) W-values.  Similarly to the power-law parameterization, the exponential 

model still lacks the ability to predict the full range of possible W estimates.   
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Figure 4.18 Performance of exponential law parameterization:  a) comparison 
between satellite-measured W (light gray circles), W(U10,Ts) 
parameterization (open circles), and W(U10) parameterization (dark 
gray circles); b) comparison between satellite-measured W and 
W(U10,Ts) parameterization.   

Figure 4.19 shows the exponential-law performance for different 

temperature ranges.  The model predicts the W variations at high temperatures (Ts from 

20 to 30 °C) best, and misses the variability at moderate temperature (Ts from 10 to 

20 °C) most severely.   



 162

Wind speed, U10 (m s-1)

2 4 6 8 10 12 14 16

W
hi

te
ca

o 
co

ve
ra

ge
, W

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Satellite measurements
Parameterization

Wind speed, U10 (m s-1)

2 4 6 8 10 12 14 16

Wind speed, U10 (m s-1)

2 4 6 8 10 12 14 16

Ts  from -1.8 to 10 oC Ts  from 10 to 20 oC Ts  from 20 to 30 oC

 

Figure 4.19 Comparison of satellite-measured and exponential-law 
parameterized W at different sea surface temperatures Ts.   

Figure 4.20 shows a monthly map (March 1998) of the whitecap coverage 

estimated using the exponential-law parameterization of W(U10, Ts) and monthly maps 

of U10 and Ts.  The strengths and weaknesses of the parameterization discussed in 

Figure 4.18 are also evident here.  The range of W-values depicted in Figure 4.20 is 

restricted:  W does not exceed 4%.  The spatial distribution of whitecap coverage in 

Figure 4.20 is more similar to that displayed by the W estimates from satellite data 

(Figure 4.2) than to that estimated with (2.3) (Figure 4.3a).  Yet, the parameterization 

shows less of the W-variability illustrated in Figure 4.2 and even misplaces some of the 

main features.  For instance, the low W east of the tip of South America in Figure 4.2 is 

missing in Figure 4.20; in Figure 4.20, W is overestimated in East-South Pacific and 

Southern Atlantic; and, the variability at mid latitudes in North Atlantic, according to 

Figure 4.2, is not present in Figure 4.20.   
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Whitecap coverage, W 

Figure 4.20 Monthly map (March 1998) of parameterized whitecap coverage 
W(U10, Ts) = a(U10, Ts)⋅⋅exp[b(U10, Ts)⋅⋅U10].   

4.3.4 Summary and possible improvements 

The initial results of parameterizing W(U10, Ts, S) show that the regression 

analysis is an appropriate tool for deriving a model accounting for the effects of various 

environmental parameters on the whitecap coverage.  Problems and difficulties in 

implementing such a regression analysis on satellite-derived estimates of W are 

established and procedures for running the analysis are proposed.  Several pertinent 

regression models are determined and applied to the data.  The inclusion of only the sea 

surface temperature effect in the W parameterization, in addition to that of wind speed, 

improved the prediction of the W variability. 
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The analysis described here is only a first attempt.  Undoubtedly, the 

inability of the proposed parameterizations to model the full range of W-variability is 

caused by the smoothing and then averaging of the observational data.  The smoothing 

and the averaging are used in this first attempt to circumvent problems with the high 

variability of the data and the inability of the least square-method to deal with it 

(frequent failure of the normality and constant-variance tests).  There are numerous 

possibilities deserving in-depth investigation, whose employment would make the 

smoothing and averaging a nuisance and would improve the implementing procedures.  

Some of these possibilities are listed.   

Providing data for wind fetch and surfactant concentrations will help the 

data binning and most probably diminish the high data variability.   

Regression functions suitable for data with high variability should be 

identified.  Or, different regression methods, alternative to the least-square method, 

dealing better with highly variable data, should be scrutinized.   

Different data binning and organization may provide a better population of 

the temperature and salinity bins with longer observational sets.   

The full potential of the least-square method should be investigated by 

considering different combinations of regression models applied to the temperature and 

salinity dependencies of the regression coefficients.  For instance, the proposed 

parameterization uses cubic polynomials for both coefficients, a and b, in the 

power-law and exponential-law models (Table 4.3).  The performance of other 

functions modeling a(Ts) and b(Ts) should be tried, e.g., cubic polynomial and 

exponential law, cubic polynomial and power law, and so on.   
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A parameterization of the effect of salinity over a wider salinity range, from 

20 to 40 psu, would most probably yield positive results.   

Though more complex than single-variable regression analysis and advised 

against by Occam’s razor, multiple regression analysis is worth investigation.   
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